Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus.
نویسندگان
چکیده
Studies of visual discrimination reversal learning have revealed striking neurochemical dissociations at the level of the orbitofrontal cortex (OFC) with serotoninergic, but not dopaminergic, integrity being important for successful reversal learning. These findings have considerable implications for disorders such as obsessive compulsive disorder and schizophrenia, in which reversal learning is impaired, and which are primarily treated with drugs targeting the dopaminergic and serotoninergic systems. Dysfunction in such disorders however, is not limited to the OFC and extends subcortically to other structures implicated in reversal learning, such as the medial caudate nucleus. Therefore, because the roles of the serotonin and dopamine within the caudate nucleus are poorly understood, this study compared the effects of selective serotoninergic or selective dopaminergic depletions of the marmoset medial caudate nucleus on serial discrimination reversal learning. All monkeys were able to learn novel stimulus-reward associations but, unlike control monkeys and monkeys with selective serotoninergic medial caudate depletions, dopamine-depleted monkeys were markedly impaired in their ability to reverse this association. This impairment was not perseverative in nature. These findings are the opposite of those seen in the OFC and provide evidence for a neurochemical double dissociation between the OFC and medial caudate in the regulation of reversal learning. Although the specific contributions of these monoamines within the OFC-striatal circuit remain to be elucidated, these findings have profound implications for the development of drugs designed to remediate some of the cognitive processes underlying impaired reversal learning.
منابع مشابه
Distinct roles for primate caudate dopamine D1 and D2 receptors in visual discrimination learning revealed using shRNA knockdown
The striatum plays important motor, associative and cognitive roles in brain functions. However, the rodent dorsolateral (the primate putamen) and dorsomedial (the primate caudate nucleus) striatum are not anatomically separated, making it difficult to distinguish their functions. By contrast, anatomical separation exists between the caudate nucleus and putamen in primates. Here, we successfull...
متن کاملOrbitofrontal dopamine depletion upregulates caudate dopamine and alters behavior via changes in reinforcement sensitivity.
Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the inf...
متن کاملDynamic regulation of dopamine and serotonin responses to salient stimuli during chronic haloperidol treatment.
Antipsychotic drugs are the clinical standard for the treatment of schizophrenia. Although these drugs work initially, many compliant patients relapse due to treatment failure. The known biomarkers can not sufficiently explain antipsychotic treatment failure. We, therefore, enquired how the dynamic responses of the neurotransmitters, dopamine and serotonin, change in relation to treatment actio...
متن کاملProgression and recovery of Parkinsonism in a chronic progressive MPTP-induction model in the marmoset without persistent molecular and cellular damage.
Chronic exposure to low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in marmoset monkeys was used to model the prodromal stage of Parkinson's disease (PD), and to investigate mechanisms underlying disease progression and recovery. Marmosets were subcutaneously injected with MPTP for a period of 12weeks, 0.5mg/kg once per week, and clinical signs of Parkinsonism, motor- and non-motor...
متن کاملEffects of cocaethylene on dopamine and serotonin synthesis in Long-Evans and Sprague-Dawley brains.
We examined the behavioral and neurochemical effects of cocaethylene treatment in Long-Evans (LE) and Sprague-Dawley (SD) rats. Cocaethylene-induced behaviors were significantly less in LE rats. Cocaethylene caused an inhibition of dopamine synthesis in the caudate nucleus and nucleus accumbens that was equivalent in both rat lines. Serotonin synthesis was also suppressed by cocaethylene treatm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2011